M1.

$$
12.9 \times 12.9 \text { or } 166.41
$$

$\frac{1}{3} \times$ their 166.41×17.4

M2.

$$
\begin{aligned}
& \frac{1}{3} \times \pi \times 1.5^{2} \times 4 \\
& \text { or } 3 \pi \\
& \\
& \frac{1}{3} \times \pi \times 1.5^{2} \times 4 \div 0.2 \\
& \text { or } 15 \pi \\
& \text { oe } \\
& \\
& {[47,47.2] \text { or } 48}
\end{aligned} \quad \text { M1 } \quad \text { M1dep }
$$

M3.or
$85 \div$ their [113, 113.2]
or $85 \div 36 \pi$
$0.75 \ldots$ or 0.8
M4. $\pi r l+\pi r^{2}=24 \pi$
15π
$3 l+9=24$
oe e.g. $3 \pi l=15 \pi$
5

> SC1 for 8 from $\pi r l=24 \pi \quad$ Must see working SC1 for 6 from $\pi r l+2 \pi r=24 \pi$ Must see working NB if height calculated after 5 seen ignore
M5. $\pi \times 90 \times 90 \times 200$
[5 080 000, 5120 000]

$$
\pi \times 90 \times 90 \times 200 \div 4
$$

or $\pi \times 90 \times 90 \times 200 \div 1000$ [1270 000, 1280 000]

$\pi \times 90 \times 90 \times 200 \div 4 \div 1000$
405π implies M3
[1270, 1280] or 1300
SC2 for [317.5, 318.5] or 320

M6.(a) $\quad 4 \times \pi \times(3 x)^{2}$
oe
$36 \pi x^{2}$
Accept π in any position
(b) $\pi \times 3 x \times I=$ their $36 \pi x^{2}$
oe

$$
(I=) 12 x
$$

ft their $k \pi x^{2}$

M7. $\frac{1}{3} \times \frac{1}{2} \times x \times x \times 2 x$
or $\frac{1}{3} \times \frac{1}{2} \times C B \times D B \times A B(2 B C)$
$\frac{1}{2} \times x \times x \times 2 x=24$ is M1 by implication.

$$
x^{3}=216
$$

6 6 from T\&। is 3 marks
6 without verification or working is 1 mark.

